Fourier Coefficients of Hilbert Modular Forms at Cusps

Tim Davis

Queen Mary, University of London
tim.davis@qmul.ac.uk

March 28, 2022

Modular forms

- Let

$$
f(z)=\sum_{n>0} a_{f}(n) e^{2 \pi i n z}
$$

be a holomorphic normalised newform of weight k and level N.

Modular forms

- Let

$$
f(z)=\sum_{n>0} a_{f}(n) e^{2 \pi i n z}
$$

be a holomorphic normalised newform of weight k and level N.

- We denote the field generated by all the Fourier coefficients of f by $\mathbb{Q}(f)$

Fourier expansion at cusps

Let \mathfrak{a} be a cusp of $\Gamma_{0}(N) \backslash \mathbb{H}$. This is equivalent to a rational number

$$
\mathfrak{a}=\frac{a}{L}, \text { where } L \mid N \text { and }(a, N)=1 .
$$

Let $\sigma=\left(\begin{array}{ll}a & b \\ L & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $\mathfrak{a}=\sigma \infty$.

Fourier expansion at cusps

Let \mathfrak{a} be a cusp of $\Gamma_{0}(N) \backslash \mathbb{H}$. This is equivalent to a rational number

$$
\mathfrak{a}=\frac{a}{L}, \text { where } L \mid N \text { and }(a, N)=1 .
$$

Let $\sigma=\left(\begin{array}{ll}a & b \\ L & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $\mathfrak{a}=\sigma \infty$. Then $\left.f\right|_{k} \sigma$ has a Fourier expansion of the form

$$
\left.f\right|_{k} \sigma(z)=\sum_{n \geq 0} a_{f}(n ; \sigma) e^{2 \pi i n z / w(\mathfrak{a})}
$$

where $w(\mathfrak{a})=N /\left(L^{2}, N\right)$ is the width of the cusp.

Fourier expansion at cusps

Let \mathfrak{a} be a cusp of $\Gamma_{0}(N) \backslash \mathbb{H}$. This is equivalent to a rational number

$$
\mathfrak{a}=\frac{a}{L}, \text { where } L \mid N \text { and }(a, N)=1 .
$$

Let $\sigma=\left(\begin{array}{ll}a & b \\ L & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $\mathfrak{a}=\sigma \infty$. Then $\left.f\right|_{k} \sigma$ has a Fourier expansion of the form

$$
\left.f\right|_{k} \sigma(z)=\sum_{n \geq 0} a_{f}(n ; \sigma) e^{2 \pi i n z / w(\mathfrak{a})}
$$

where $w(\mathfrak{a})=N /\left(L^{2}, N\right)$ is the width of the cusp.

- The q-expansion principle implies that the Fourier coefficients at any cusp lie in the number field $\mathbb{Q}(f)\left(\zeta_{N}\right)$

A question about the Fourier coefficients of $\left.f\right|_{k} g$

- Let f be a normalised newform of level N and weight k and $g \in \mathrm{SL}_{2}(\mathbb{Z})$; what is the number field that the Fourier coefficients of $\left.f\right|_{k} g$ generate?

A question about the Fourier coefficients of $\left.f\right|_{k} g$

- Let f be a normalised newform of level N and weight k and $g \in \mathrm{SL}_{2}(\mathbb{Z})$; what is the number field that the Fourier coefficients of $\left.f\right|_{k} g$ generate?
- Can one write down an explicit subfield of $\mathbb{Q}(f)\left(\zeta_{N}\right)$, depending on the entries of g, which contains all the Fourier coefficients of $\left.f\right|_{k} g$?

The answer

Theorem (Brunault \& Neururer, 2020)

Let f be a normalised newform on $\Gamma_{0}(N)$ with weight k. Let $\mathbb{Q}(f)$ be the field generated by all the Fourier coefficients of f. Let $\sigma=\left(\begin{array}{lll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$. Then the Fourier coefficients of $\left.f\right|_{k} \sigma$ lie in the cyclotomic extension $\mathbb{Q}(f)\left(\zeta_{N^{\prime}}\right)$ where $N^{\prime}=N /(c d, N)$.

The answer

Theorem (Brunault \& Neururer, 2020)

Let f be a normalised newform on $\Gamma_{0}(N)$ with weight k. Let $\mathbb{Q}(f)$ be the field generated by all the Fourier coefficients of f. Let $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$. Then the Fourier coefficients of $\left.f\right|_{k} \sigma$ lie in the cyclotomic extension $\mathbb{Q}(f)\left(\zeta_{N^{\prime}}\right)$ where $N^{\prime}=N /(c d, N)$.

- This result holds more generally for modular forms on $\Gamma_{1}(N)$
- The proof is purely classical

Hilbert modular forms I

Hilbert modular forms I

- Let F be a totally real number field of degree n with narrow class group of size h and ring of integers \mathcal{O}_{F}. Let \mathfrak{n} denote a fixed integral ideal of \mathcal{O}_{F}
- For $\mu=1, \ldots, h$, we define the congruence subgroup $\Gamma_{\mu}(\mathfrak{n})$ of $\mathrm{GL}_{2}(F)$ as
$\Gamma_{\mu}(\mathfrak{n})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, d \in \mathcal{O}_{F}, b \in\left(t_{\mu}\right)^{-1} \mathfrak{D}_{F}^{-1}, c \in \mathfrak{n} t_{\mu} \mathfrak{D}_{F}, a d-b c \in \mathcal{O}_{F}^{\times}\right\}$,

Hilbert modular forms I

- Let F be a totally real number field of degree n with narrow class group of size h and ring of integers \mathcal{O}_{F}. Let \mathfrak{n} denote a fixed integral ideal of \mathcal{O}_{F}
- For $\mu=1, \ldots, h$, we define the congruence subgroup $\Gamma_{\mu}(\mathfrak{n})$ of $\mathrm{GL}_{2}(F)$ as
$\Gamma_{\mu}(\mathfrak{n})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, d \in \mathcal{O}_{F}, b \in\left(t_{\mu}\right)^{-1} \mathfrak{D}_{F}^{-1}, c \in \mathfrak{n} t_{\mu} \mathfrak{D}_{F}, a d-b c \in \mathcal{O}_{F}^{\times}\right\}$,
- Let f_{μ} be a Hilbert modular form of weight $k=\left(k_{1}, \ldots, k_{n}\right)$ and level $\Gamma_{\mu}(\mathfrak{n})$.

Hilbert modular forms I

- Let F be a totally real number field of degree n with narrow class group of size h and ring of integers \mathcal{O}_{F}. Let \mathfrak{n} denote a fixed integral ideal of \mathcal{O}_{F}
- For $\mu=1, \ldots, h$, we define the congruence subgroup $\Gamma_{\mu}(\mathfrak{n})$ of $\mathrm{GL}_{2}(F)$ as
$\Gamma_{\mu}(\mathfrak{n})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, d \in \mathcal{O}_{F}, b \in\left(t_{\mu}\right)^{-1} \mathfrak{D}_{F}^{-1}, c \in \mathfrak{n} t_{\mu} \mathfrak{D}_{F}, a d-b c \in \mathcal{O}_{F}^{\times}\right\}$,
- Let f_{μ} be a Hilbert modular form of weight $k=\left(k_{1}, \ldots, k_{n}\right)$ and level $\Gamma_{\mu}(\mathfrak{n})$. We have that f_{μ} has a Fourier expansion of the form

$$
f_{\mu}(z)=\sum_{\xi \in\left(t_{\mu} \mathcal{O}_{F}\right)_{+} \cup\{0\}} a_{\mu}(\xi) e^{2 \pi i \operatorname{Tr}(\xi z)}
$$

Hilbert modular forms II

- A Hilbert newform of weight k and level \mathfrak{n} is a tuple $\mathbf{f}=\left(f_{1}, \ldots, f_{h}\right)$ where f_{μ} is a Hilbert cuspform for $\Gamma_{\mu}(\mathfrak{n})$ and \mathbf{f} does not come from lower level and is a Hecke eigenform

Hilbert modular forms II

- A Hilbert newform of weight k and level \mathfrak{n} is a tuple $\mathbf{f}=\left(f_{1}, \ldots, f_{h}\right)$ where f_{μ} is a Hilbert cuspform for $\Gamma_{\mu}(\mathfrak{n})$ and \mathbf{f} does not come from lower level and is a Hecke eigenform
- We define

$$
c_{\mu}\left(\xi ; f_{\mu}\right)=N\left(t_{\mu} \mathcal{O}_{F}\right)^{-k_{0} / 2} a_{\mu}(\xi) \xi^{\left(k_{0} 1-k\right) / 2}
$$

where $k_{0}=\max \left\{k_{1}, \ldots, k_{n}\right\}$ and $k_{0} \mathbf{1}=\left(k_{0}, \ldots, k_{0}\right)$

Hilbert modular forms II

- A Hilbert newform of weight k and level \mathfrak{n} is a tuple $\mathbf{f}=\left(f_{1}, \ldots, f_{h}\right)$ where f_{μ} is a Hilbert cuspform for $\Gamma_{\mu}(\mathfrak{n})$ and \mathbf{f} does not come from lower level and is a Hecke eigenform
- We define

$$
c_{\mu}\left(\xi ; f_{\mu}\right)=N\left(t_{\mu} \mathcal{O}_{F}\right)^{-k_{0} / 2} a_{\mu}(\xi) \xi^{\left(k_{0} 1-k\right) / 2}
$$

where $k_{0}=\max \left\{k_{1}, \ldots, k_{n}\right\}$ and $k_{0} \mathbf{1}=\left(k_{0}, \ldots, k_{0}\right)$

- We let $\mathbb{Q}(\mathbf{f})$ denote the number field generated by $c_{\mu}\left(\xi ; f_{\mu}\right)$ as ξ varies over F and μ varies over $1 \leq \mu \leq h$ (Shimura, 1978).

Main result

- Let $\mathbf{f}=\left(f_{1}, \ldots, f_{h}\right)$ be a normalised newform of level \mathfrak{n} and weight $k=\left(k_{1}, \ldots, k_{n}\right)$ and $\sigma \in \Gamma_{\mu}(1)$; what is the explicit cyclotomic extension (depending on σ) of $\mathbb{Q}(\mathbf{f})$ which contains all the Fourier coefficients of $f_{\mu} \|_{k} \sigma$?
- Let $\mathbb{Q}(\mathbf{f}, \mu, \sigma)$ denote the field generated by $c_{\mu}\left(\xi ; f_{\mu} \|_{k} \sigma\right)$ as ξ varies over F.

Main result

- Let $\mathbf{f}=\left(f_{1}, \ldots, f_{h}\right)$ be a normalised newform of level \mathfrak{n} and weight $k=\left(k_{1}, \ldots, k_{n}\right)$ and $\sigma \in \Gamma_{\mu}(1)$; what is the explicit cyclotomic extension (depending on σ) of $\mathbb{Q}(\mathbf{f})$ which contains all the Fourier coefficients of $f_{\mu} \|_{k} \sigma$?
- Let $\mathbb{Q}(\mathbf{f}, \mu, \sigma)$ denote the field generated by $c_{\mu}\left(\xi ; f_{\mu} \|_{k} \sigma\right)$ as ξ varies over F.

Theorem

Let $\mathbf{f}=\left(f_{1}, \ldots, f_{h}\right)$ be a normalised cuspidal Hilbert newform of level \mathfrak{n} and weight $k=\left(k_{1}, \ldots, k_{n}\right)$ with $k_{1} \equiv \ldots \equiv k_{n}(\bmod 2)$. Let $1 \leq \mu \leq h$ and $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{\mu}(1)$. Then $\mathbb{Q}(\mathbf{f}, \mu, \sigma)$ lies in the number field $\mathbb{Q}(\mathbf{f})\left(\zeta_{N_{0}}\right)$ where N_{0} is the integer such that $N_{0} \mathbb{Z}=\mathfrak{n} /\left(c d t_{\mu}^{-1} \mathfrak{D}_{F}^{-1}, \mathfrak{n}\right) \cap \mathbb{Z}$.

Key result I

- Let Π_{v} be an irreducible admissible infinite dimensional representation of $\mathrm{GL}_{2}\left(F_{v}\right)$ with unramified central character
- Let W_{v} be the local normalised Whittaker newform

Key result I

- Let Π_{v} be an irreducible admissible infinite dimensional representation of $\mathrm{GL}_{2}\left(F_{v}\right)$ with unramified central character
- Let W_{v} be the local normalised Whittaker newform
- Let $\tau \in \operatorname{Aut}(\mathbb{C})$ and $g \in \mathrm{GL}_{2}\left(F_{v}\right)$.

Key result I

- Let Π_{v} be an irreducible admissible infinite dimensional representation of $\mathrm{GL}_{2}\left(F_{v}\right)$ with unramified central character
- Let W_{v} be the local normalised Whittaker newform
- Let $\tau \in \operatorname{Aut}(\mathbb{C})$ and $g \in \mathrm{GL}_{2}\left(F_{v}\right)$. Then we have

$$
\tau\left(W_{v}(g)\right)=W_{\tau_{\Pi_{v}}}\left(a\left(\alpha_{\tau}\right) g\right)(\text { Raghuram \& Tanabe, 2011) }
$$

Key result I

- Let Π_{v} be an irreducible admissible infinite dimensional representation of $\mathrm{GL}_{2}\left(F_{v}\right)$ with unramified central character
- Let W_{v} be the local normalised Whittaker newform
- Let $\tau \in \operatorname{Aut}(\mathbb{C})$ and $g \in \mathrm{GL}_{2}\left(F_{v}\right)$. Then we have

$$
\tau\left(W_{v}(g)\right)=W_{\tau_{\Pi_{v}}}\left(a\left(\alpha_{\tau}\right) g\right)(\text { Raghuram \& Tanabe, 2011) }
$$

- So if $\Pi_{v} \otimes| |^{k_{0} / 2} \cong \tau\left(\Pi_{v} \otimes| |^{k_{0} / 2}\right)$, we have that

$$
\tau\left(W_{v}(g)\right) \tau\left(|\operatorname{det}(g)|_{v}^{k_{0} / 2}\right)=W_{v}\left(a\left(\alpha_{\tau}\right) g\right)|\operatorname{det}(g)|_{v}^{k_{0} / 2}
$$

Key result II

- Let ϕ be an adelic newform in the space of Π and $\mathbf{f}=\left(f_{1}, \ldots, f_{h}\right)$ be the corresponding classical Hilbert newform

Key result II

- Let ϕ be an adelic newform in the space of Π and $\mathbf{f}=\left(f_{1}, \ldots, f_{h}\right)$ be the corresponding classical Hilbert newform
- Let $\sigma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma_{\mu}(1)$ then $f_{\mu} \|_{k} \sigma$ is a Hilbert cuspform for $\sigma^{-1} \Gamma_{\mu}(\mathfrak{n}) \sigma$ and

$$
f_{\mu} \|_{k} \sigma(z)=y^{-k / 2} \phi\left(g_{z} \iota_{\mathrm{f}}\left(\sigma^{-1}\right) x_{\mu}\right)
$$

Key result II

- Let ϕ be an adelic newform in the space of Π and $\mathbf{f}=\left(f_{1}, \ldots, f_{h}\right)$ be the corresponding classical Hilbert newform
- Let $\sigma=\left(\begin{array}{lll}a & b \\ c & d\end{array}\right) \in \Gamma_{\mu}(1)$ then $f_{\mu} \|_{k} \sigma$ is a Hilbert cuspform for $\sigma^{-1} \Gamma_{\mu}(\mathfrak{n}) \sigma$ and

$$
f_{\mu} \|_{k} \sigma(z)=y^{-k / 2} \phi\left(g_{z} \iota_{\mathrm{f}}\left(\sigma^{-1}\right) x_{\mu}\right)
$$

- We have $f_{\mu} \|_{k} \sigma$ has a Fourier expansion of the form

$$
f_{\mu} \|_{k} \sigma(z)=\sum_{\left(\left(t_{\mu} \mathcal{O}_{F}\right) \mathfrak{w}(\sigma, \mathfrak{n})^{-1}\right)_{+}} a_{\mu}(\xi ; \sigma) e^{2 \pi i \operatorname{Tr}(\xi z)}
$$

where $\mathfrak{w}(\sigma, \mathfrak{n})=\mathfrak{n}\left(\left(a^{2} \mathfrak{n},\left(t_{\mu}^{-1} \mathfrak{D}_{F}^{-1} c\right)^{2}\right)\right)^{-1}$

Key result II

- Let ϕ be an adelic newform in the space of Π and $\mathbf{f}=\left(f_{1}, \ldots, f_{h}\right)$ be the corresponding classical Hilbert newform
- Let $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{\mu}(1)$ then $f_{\mu} \|_{k} \sigma$ is a Hilbert cuspform for $\sigma^{-1} \Gamma_{\mu}(\mathfrak{n}) \sigma$ and

$$
f_{\mu} \|_{k} \sigma(z)=y^{-k / 2} \phi\left(g_{z} \iota_{\mathrm{f}}\left(\sigma^{-1}\right) x_{\mu}\right)
$$

- We have $f_{\mu} \|_{k} \sigma$ has a Fourier expansion of the form

$$
f_{\mu} \|_{k} \sigma(z)=\sum_{\left(\left(t_{\mu} \mathcal{O}_{F}\right) \mathfrak{w}(\sigma, \mathfrak{n})^{-1}\right)_{+}} a_{\mu}(\xi ; \sigma) e^{2 \pi i \operatorname{Tr}(\xi z)}
$$

where $\mathfrak{w}(\sigma, \mathfrak{n})=\mathfrak{n}\left(\left(a^{2} \mathfrak{n},\left(t_{\mu}^{-1} \mathfrak{D}_{F}^{-1} c\right)^{2}\right)\right)^{-1}$
Let $\xi \in F^{\times}$. Then
$W_{\phi}\left(a(\xi) g_{z} \iota_{\mathfrak{f}}\left(\sigma^{-1}\right) x_{\mu}\right)=\left\{\begin{array}{l}y^{k / 2} a_{\mu}(\xi ; \sigma) e(\operatorname{Tr}(\xi z)), \text { if } \xi \in\left(\left(t_{\mu} \mathcal{O}_{F}\right) \mathfrak{w}(\sigma, \mathfrak{n})^{-1}\right)_{+} \\ 0, \text { otherwise. }\end{array}\right.$

Overview of main result proof

- From key result II we have

$$
\begin{aligned}
a_{\mu}(\xi ; \sigma) & =y^{-k / 2} e^{-2 \pi i \operatorname{Tr}(\xi z)} W_{\phi}\left(a(\xi) g_{z} \iota_{\mathrm{f}}\left(\sigma^{-1}\right) x_{\mu}\right) \\
& =\xi^{k / 2} \prod_{v<\infty} W_{v}\left(a(\xi) \iota_{\mathrm{f}}\left(\sigma^{-1}\right) x_{\mu, v}\right), \text { from evaluating } W_{\infty}
\end{aligned}
$$

Overview of main result proof

- From key result II we have

$$
\begin{aligned}
a_{\mu}(\xi ; \sigma) & =y^{-k / 2} e^{-2 \pi i \operatorname{Tr}(\xi z)} W_{\phi}\left(a(\xi) g_{z} \iota f_{\mathrm{f}}\left(\sigma^{-1}\right) x_{\mu}\right) \\
& =\xi^{k / 2} \prod_{v<\infty} W_{v}\left(a(\xi) \iota_{\mathrm{f}}\left(\sigma^{-1}\right) x_{\mu, v}\right), \text { from evaluating } W_{\infty}
\end{aligned}
$$

- Thus

$$
c_{\mu}\left(\xi ; f_{\mu} \|_{k} \sigma\right)=N\left(t_{\mu} \mathcal{O}_{F}\right)^{-k_{0} / 2} \xi^{k_{0} \mathbf{1} / 2} \prod_{v<\infty} W_{v}\left(a(\xi) \iota_{\mathrm{f}}\left(\sigma^{-1}\right) x_{\mu, v}\right)
$$

Overview of main result proof

- From key result II we have

$$
\begin{aligned}
a_{\mu}(\xi ; \sigma) & =y^{-k / 2} e^{-2 \pi i \operatorname{Tr}(\xi z)} W_{\phi}\left(a(\xi) g_{z} \iota_{\mathrm{f}}\left(\sigma^{-1}\right) x_{\mu}\right) \\
& =\xi^{k / 2} \prod_{v<\infty} W_{v}\left(a(\xi) \iota_{\mathrm{f}}\left(\sigma^{-1}\right) x_{\mu, v}\right), \text { from evaluating } W_{\infty}
\end{aligned}
$$

- Thus

$$
c_{\mu}\left(\xi ; f_{\mu} \|_{k} \sigma\right)=N\left(t_{\mu} \mathcal{O}_{F}\right)^{-k_{0} / 2} \xi^{k_{0} \mathbf{1} / 2} \prod_{v<\infty} W_{v}\left(a(\xi) \iota_{\mathrm{f}}\left(\sigma^{-1}\right) x_{\mu, v}\right)
$$

- Suppose that $\tau \in \operatorname{Aut}(\mathbb{C})$ fixes $\mathbb{Q}(\mathbf{f})\left(\zeta_{N_{0}}\right)$ then use Key result I to find $\tau\left(W_{v}\left(a(\xi) \iota_{\mathrm{f}}\left(\sigma^{-1}\right) x_{\mu, v}\right)\right)$

Overview of main result proof

- From key result II we have

$$
\begin{aligned}
a_{\mu}(\xi ; \sigma) & =y^{-k / 2} e^{-2 \pi i \operatorname{Tr}(\xi z)} W_{\phi}\left(a(\xi) g_{z} \iota_{\mathrm{f}}\left(\sigma^{-1}\right) x_{\mu}\right) \\
& =\xi^{k / 2} \prod_{v<\infty} W_{v}\left(a(\xi) \iota_{\mathrm{f}}\left(\sigma^{-1}\right) x_{\mu, v}\right), \text { from evaluating } W_{\infty}
\end{aligned}
$$

- Thus

$$
c_{\mu}\left(\xi ; f_{\mu} \|_{k} \sigma\right)=N\left(t_{\mu} \mathcal{O}_{F}\right)^{-k_{0} / 2} \xi^{k_{0} \mathbf{1} / 2} \prod_{v<\infty} W_{v}\left(a(\xi) \iota_{\mathrm{f}}\left(\sigma^{-1}\right) x_{\mu, v}\right)
$$

- Suppose that $\tau \in \operatorname{Aut}(\mathbb{C})$ fixes $\mathbb{Q}(\mathbf{f})\left(\zeta_{N_{0}}\right)$ then use Key result I to find $\tau\left(W_{v}\left(a(\xi) \iota_{\mathrm{f}}\left(\sigma^{-1}\right) x_{\mu, v}\right)\right)$
- Show

$$
\frac{\tau\left(c_{\mu}\left(\xi ; f_{\mu} \|_{k} \sigma\right)\right)}{c_{\mu}\left(\xi ; f_{\mu} \|_{k} \sigma\right)}=1
$$

Closing remarks

- We have found sufficient conditions so is the field $\mathbb{Q}(\mathbf{f})\left(\zeta_{N_{0}}\right)$ optimal?

Closing remarks

- We have found sufficient conditions so is the field $\mathbb{Q}(\mathbf{f})\left(\zeta_{N_{0}}\right)$ optimal?
- Can one generalise these results to the case of non-trivial central character?

Closing remarks

- We have found sufficient conditions so is the field $\mathbb{Q}(\mathbf{f})\left(\zeta_{N_{0}}\right)$ optimal?
- Can one generalise these results to the case of non-trivial central character?
- Can one write an algorithm to compute the Fourier coefficients of Hilbert newforms at cusps?

Thank You

Any Questions?

